A mechanosensing mechanism controls plasma membrane shape homeostasis at the nanoscale
Xarxa Quiroga,
Nikhil Walani,
Andrea Disanza,
Albert Chavero,
Alexandra Mittens,
Francesc Tebar,
Xavier Trepat,
Robert G Parton,
María Isabel Geli,
Giorgio Scita,
Marino Arroyo,
Anabel-Lise Le Roux,
Pere Roca-Cusachs
Affiliations
Xarxa Quiroga
Institute for Bioengineering of Catalonia, the Barcelona Institute of Technology (BIST), Barcelona, Spain; Departament de Biomedicina, Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
Department of Applied Mechanics, IIT Delhi, New Delhi, India
Andrea Disanza
IFOM ETS - The AIRC Institute of Molecular Oncology, Milan, Italy
Albert Chavero
Departament de Biomedicina, Unitat de Biologia Cel·lular, Facultat de Medicina i Ciències de la Salut, Centre de Recerca Biomèdica CELLEX, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Barcelona, Spain
Alexandra Mittens
Institute for Bioengineering of Catalonia, the Barcelona Institute of Technology (BIST), Barcelona, Spain
Francesc Tebar
Departament de Biomedicina, Unitat de Biologia Cel·lular, Facultat de Medicina i Ciències de la Salut, Centre de Recerca Biomèdica CELLEX, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Barcelona, Spain
IFOM ETS - The AIRC Institute of Molecular Oncology, Milan, Italy; Department of Oncology and Haemato-Oncology, University of Milan, Milan, Italy
Marino Arroyo
Institute for Bioengineering of Catalonia, the Barcelona Institute of Technology (BIST), Barcelona, Spain; Universitat Politècnica de Catalunya (UPC), Campus Nord, Carrer de Jordi Girona, Barcelona, Spain; Centre Internacional de Mètodes Numèrics en Enginyeria (CIMNE), Barcelona, Spain
Institute for Bioengineering of Catalonia, the Barcelona Institute of Technology (BIST), Barcelona, Spain; Departament de Biomedicina, Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
As cells migrate and experience forces from their surroundings, they constantly undergo mechanical deformations which reshape their plasma membrane (PM). To maintain homeostasis, cells need to detect and restore such changes, not only in terms of overall PM area and tension as previously described, but also in terms of local, nanoscale topography. Here, we describe a novel phenomenon, by which cells sense and restore mechanically induced PM nanoscale deformations. We show that cell stretch and subsequent compression reshape the PM in a way that generates local membrane evaginations in the 100 nm scale. These evaginations are recognized by I-BAR proteins, which triggers a burst of actin polymerization mediated by Rac1 and Arp2/3. The actin polymerization burst subsequently re-flattens the evagination, completing the mechanochemical feedback loop. Our results demonstrate a new mechanosensing mechanism for PM shape homeostasis, with potential applicability in different physiological scenarios.