PLoS ONE (Jan 2020)

Reference gene selection for quantitative real-time PCR (qRT-PCR) expression analysis in Galium aparine L.

  • Xu Su,
  • Liuyang Lu,
  • Yashe Li,
  • Congai Zhen,
  • Guilei Hu,
  • Kun Jiang,
  • Yawei Yan,
  • Yanbo Xu,
  • Geng Wang,
  • Mingwang Shi,
  • Xiling Chen,
  • Baizhong Zhang

DOI
https://doi.org/10.1371/journal.pone.0226668
Journal volume & issue
Vol. 15, no. 2
p. e0226668

Abstract

Read online

To accurately evaluate expression levels of target genes, stable internal reference genes is required for normalization of quantitative real-time PCR (qRT-PCR) data. However, there have been no systematical investigation on the stability of reference genes used in the bedstraw weed, Galium aparine L. (BGA). In this study, the expression profiles of seven traditionally used reference genes, namely 18S, 28S, ACT, GAPDH, EF1α, RPL7 and TBP in BGA were assessed under both biotic (developmental time and tissue), and abiotic (temperature, regions and herbicide) conditions. Four analytical algorithms (geNorm, Normfinder, BestKeeper and the ΔCt method) were used to analyze the suitability of these genes as internal reference genes. RefFinder, a comprehensive analytical software, was used to rank the overall stability of the candidate genes. The optimal normalization internal control genes were ranked as: 28S and RPL7 were best for all the different experimental conditions (developmental stages, tissues, temperature, regions and herbicide treatment); 28S and RPL7 for developmental stages; TBP and GAPDH for different tissues; 28S and GAPDH were relatively stable for different temperature; 28S and TBP were suitable for herbicide treatment. A specific set of reference genes were recommended for each experimental condition in BGA.