Applied Sciences (Sep 2017)

Perspective on Double Pulsed Gas Metal Arc Welding

  • Leilei Wang,
  • Jiaxiang Xue

DOI
https://doi.org/10.3390/app7090894
Journal volume & issue
Vol. 7, no. 9
p. 894

Abstract

Read online

Aluminum alloy welding suffers from problems such as solidification cracking and hydrogen-induced porosity, which are sufficiently severe to limit its potential applications. Because mitigated porosity incidence and solidification cracking are observed in aluminum welds using double pulsed gas metal arc welding (DP-GMAW), a comprehensive review of the mechanism is necessary, but absent from the literature. The oscillation of arc force and droplet pressure causes a weld pool stir effect. The expansion and shrinkage of the weld pool cause unusual remelting and resolidification of the previously solidified metal. DP-GMAW has an increased solidification growth rate and cooling rate, compared with conventional pulsed welding at same heat input. Both numerical and experimental results reveal the remarkable concept that refined microstructure in the fusion zone is obtained by using DP-GMAW. The mechanism of microstructural refinement is revealed as a weld pool stir effect and increased cooling rate. Hydrogen bubbles easily float out and then release from the weld pool originated from the weld pool stir effect. Reduced solidification cracking is achieved due to the refined solidification structure that originated from the increased cooling rate. The advantages, evolution process, and future trend of DP-GMAW are discussed.

Keywords