Scientific Reports (Jan 2021)

Supercapacitors based on Ti3C2Tx MXene extracted from supernatant and current collectors passivated by CVD-graphene

  • Sunil Kumar,
  • Malik Abdul Rehman,
  • Sungwon Lee,
  • Minwook Kim,
  • Hyeryeon Hong,
  • Jun-Young Park,
  • Yongho Seo

DOI
https://doi.org/10.1038/s41598-020-80799-9
Journal volume & issue
Vol. 11, no. 1
pp. 1 – 9

Abstract

Read online

Abstract An ultrahigh capacity supercapacitor is fabricated using a nano-layered MXene as an active electrode material, and Ni-foil is used as a current collector. The high-quality Ti3C2Tx obtained from supernatant during etching and washing processes improves the specific capacitance significantly. As another strategy, the surface of Ni-foil is engineered by coating chemical vapor deposition-grown graphene. The graphene grown directly on the Ni-foil is used as a current collector, forming the electrode structure of Ti3C2Tx/graphene/Ni. The surface passivation of the current collectors has a high impact on charge-transfer, which in turn increases the capacitance of the supercapacitors. It is found that the capacitance of the graphene-based supercapacitors is more than 1.5 times of the capacitance without graphene. A high specific capacitance, ~ 542 F/g, is achieved at 5 mV/s scan rate based on cyclic voltammetry analysis. Also, the graphene-based supercapacitor exhibits a quasi-rectangular form in cyclic voltammetry curves and a symmetric behavior in charge/discharge curves. Furthermore, cyclic stability up to 5000 cycles is confirmed with high capacitance retention at high scan rate 1000 mV/s. A reduced series resistance with a high limit capacitance is revealed by equivalent circuit analysis with the Nyquist plot.