Symmetry (Apr 2021)

Algebras Describing Pseudocomplemented, Relatively Pseudocomplemented and Sectionally Pseudocomplemented Posets

  • Ivan Chajda,
  • Helmut Länger

DOI
https://doi.org/10.3390/sym13050753
Journal volume & issue
Vol. 13, no. 5
p. 753

Abstract

Read online

In order to be able to use methods of universal algebra for investigating posets, we assigned to every pseudocomplemented poset, to every relatively pseudocomplemented poset and to every sectionally pseudocomplemented poset, a certain algebra (based on a commutative directoid or on a λ-lattice) which satisfies certain identities and implications. We show that the assigned algebras fully characterize the given corresponding posets. A certain kind of symmetry can be seen in the relationship between the classes of mentioned posets and the classes of directoids and λ-lattices representing these relational structures. As we show in the paper, this relationship is fully symmetric. Our results show that the assigned algebras satisfy strong congruence properties which can be transferred back to the posets. We also mention applications of such posets in certain non-classical logics.

Keywords