BMC Microbiology (Nov 2012)

Toxin-antitoxin loci <it>vapBC-1</it> and <it>vapXD</it> contribute to survival and virulence in nontypeable <it>Haemophilus influenzae</it>

  • Ren Dabin,
  • Walker Anna N,
  • Daines Dayle A

DOI
https://doi.org/10.1186/1471-2180-12-263
Journal volume & issue
Vol. 12, no. 1
p. 263

Abstract

Read online

Abstract Background Nontypeable Haemophilus influenzae (NTHi) is a significant human pathogen responsible for respiratory tract infections and the most common cause of recurrent otitis media. Type II toxin-antitoxin (TA) systems are genetic elements that code for a stable protein toxin and a labile antitoxin that are thought to be involved in metabolic regulation of bacteria by enabling a switch to a dormant state under stress conditions. The contribution to infection persistence of the NTHi TA loci vapBC-1 and vapXD was examined in this study. Results Deletions in vapBC-1, vapXD and vapBC-1 vapXD significantly decreased the survival of NTHi co-cultured with primary human respiratory tissue at the air-liquid interface and in the chinchilla model of otitis media. The TA deletions did not affect the growth dynamics of the mutants in rich media, their ultra-structural morphology, or display appreciable synergy during NTHi infections. The toxin and antitoxin proteins of both pairs heterodimerized in vivo. Consistent with our previous findings regarding the VapC-1 toxin, the NTHi VapD toxin also displayed ribonuclease activity. Conclusions We conclude that the vapBC-1 and vapXD TA loci enhance NTHi survival and virulence during infection in vitro and in vivo using a mechanism of mRNA cleavage, and that these conserved TA pairs represent new targets for the prophylaxis and therapy of otitis media and other NTHi-caused mucosal diseases.

Keywords