Applied Sciences (Jun 2018)

The Design and Implementation of a Novel Open Source Massive Deployment System

  • Steven J. H. Shiau,
  • Chen-Kai Sun,
  • Yu-Chin Tsai,
  • Jer-Nan Juang,
  • Chi-Yo Huang

DOI
https://doi.org/10.3390/app8060965
Journal volume & issue
Vol. 8, no. 6
p. 965

Abstract

Read online

The hypervisor and container are emerging cloud computing and fog computing technologies, which enable rapid system deployment. However, both of the technologies depend on the operating system (OS) and applications that are installed on the host machines. System deployment is the activity to deliver and install OSs and applications onto computers. Such deployment activities are widely required in the infrastructure of cloud computing, fog computing, high-performance computing clusters, and classrooms of computer education. Albeit the concept of system deployment is not new, traditional solutions cannot support the rapid evolution of open source file systems. Furthermore, existing solutions cannot support the massive deployment of disks in a computer as well as the massive deployment in large-scale computers. To resolve the issue, the authors proposed novel system architecture as well as software that is openly available. The experiments are undertaken by deploying a Linux system to 1 to 30 Universal Serial Bus (USB) flash drives in a single machine and to 1 to 32 machines in a network using the software that is being developed in this work. The results have demonstrated the feasibility and efficiency of the proposed work. The relationships between the bus bandwidth, the writing rate of the USB flash drive, and the number of flash drives were also formulated as a govern equation. Performance evaluation and cost savings in comparing to the deployment cases adopting commercial software were also provided for demonstrating the performance enhancement and cost reduction by using the novel deployment system. In general, the proposed architecture and the developed software are highly effective from the aspects of both performance and cost.

Keywords