OCIAD1 contributes to neurodegeneration in Alzheimer's disease by inducing mitochondria dysfunction, neuronal vulnerability and synaptic damages
Xuping Li,
Lin Wang,
Matthew Cykowski,
Tiancheng He,
Timothy Liu,
Joshua Chakranarayan,
Andreana Rivera,
Hong Zhao,
Suzanne Powell,
Weiming Xia,
Stephen T.C. Wong
Affiliations
Xuping Li
Ting Tsung & Wei Fong Chao Center for BRAIN, Weill Cornell Medicine, Houston Methodist Research Institute, 6670 Bertner Ave, Houston, TX 77030, USA; Corresponding author at: Ting Tsung & Wei Fong Chao Center for BRAIN, Houston Methodist Research Institute, Weill Cornell Medicine, 6670 Bertner Ave, Houston, TX 77030, USA.
Lin Wang
Department of Informatics Development, Houston Methodist Hospital, Houston, TX 77030, USA
Matthew Cykowski
Departments of Pathology and Genome Medicine, Weill Cornell Medicine, Houston Methodist Hospital, Houston, TX 77030, USA
Tiancheng He
Department of Informatics Development, Houston Methodist Hospital, Houston, TX 77030, USA
Timothy Liu
Ting Tsung & Wei Fong Chao Center for BRAIN, Weill Cornell Medicine, Houston Methodist Research Institute, 6670 Bertner Ave, Houston, TX 77030, USA
Joshua Chakranarayan
Ting Tsung & Wei Fong Chao Center for BRAIN, Weill Cornell Medicine, Houston Methodist Research Institute, 6670 Bertner Ave, Houston, TX 77030, USA
Andreana Rivera
Departments of Pathology and Genome Medicine, Weill Cornell Medicine, Houston Methodist Hospital, Houston, TX 77030, USA
Hong Zhao
Ting Tsung & Wei Fong Chao Center for BRAIN, Weill Cornell Medicine, Houston Methodist Research Institute, 6670 Bertner Ave, Houston, TX 77030, USA
Suzanne Powell
Departments of Pathology and Genome Medicine, Weill Cornell Medicine, Houston Methodist Hospital, Houston, TX 77030, USA
Weiming Xia
Ting Tsung & Wei Fong Chao Center for BRAIN, Weill Cornell Medicine, Houston Methodist Research Institute, 6670 Bertner Ave, Houston, TX 77030, USA; Geriatric Research Education Clinical Center, Edith Nourse Rogers Memorial Veterans Hospital, Bedford, MA 01730, USA; Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118, USA
Stephen T.C. Wong
Ting Tsung & Wei Fong Chao Center for BRAIN, Weill Cornell Medicine, Houston Methodist Research Institute, 6670 Bertner Ave, Houston, TX 77030, USA; Department of Informatics Development, Houston Methodist Hospital, Houston, TX 77030, USA; Departments of Pathology and Genome Medicine, Weill Cornell Medicine, Houston Methodist Hospital, Houston, TX 77030, USA; Departments of Radiology, Weill Cornell Medicine, Houston Methodist Hospital, Houston, TX 77030, USA; Corresponding author at: Ting Tsung & Wei Fong Chao Center for BRAIN, Houston Methodist Research Institute, Weill Cornell Medicine, 6670 Bertner Ave, Houston, TX 77030, USA.
Background: Hyperamyloidosis in the brain is known as the earliest neuropathological change and a unique etiological factor in Alzheimer's disease (AD), while progressive neurodegeneration in certain vulnerable brain regions forms the basis of clinical syndromes. It is not clear how early hyperamyloidosis is implicated in progressive neurodegeneration and what factors contribute to the selective brain vulnerability in AD. Methods: Bioinformatics and experimental neurobiology methods were integrated to identify novel factors involved in the hyperamyloidosis-induced brain vulnerability in AD. We first examined neurodegeneration-specific gene signatures from sporadic AD patients and synaptic protein changes in young transgenic AD mice. Then, we systematically assessed the association of a top candidate gene with AD and investigated its mechanistic role in neurodegeneration. Findings: We identified the ovary-orientated protein OCIAD1 (Ovarian-Carcinoma-Immunoreactive-Antigen-Domain-Containing-1) as a neurodegeneration-associated factor for AD. Higher levels of OCIAD1, found in vulnerable brain areas and dystrophic neurites, were correlated with disease severity. Multiple early AD pathological events, particularly Aβ/GSK-3β signaling, elevate OCIAD1, which in turn interacts with BCL-2 to impair mitochondrial function and facilitates mitochondria-associated neuronal injury. Notably, elevated OCIAD1 by Aβ increases cell susceptibility to other AD pathological challenges. Interpretation: Our findings suggest that OCIAD1 contributes to neurodegeneration in AD by impairing mitochondria function, and subsequently leading to neuronal vulnerability, and synaptic damages. Funding: Ting Tsung & Wei Fong Chao Foundation, John S Dunn Research Foundation, Cure Alzheimer's Fund, and NIH R01AG057635 to STCW. Keywords: OCIAD1, Neurodegeneration, Hyperamyloidosis, Mitochondrial dysfunction, Alzheimer's disease