Neural Plasticity (Jan 2021)
Voxel-Wise Brain-Wide Functional Connectivity Abnormalities in Patients with Primary Blepharospasm at Rest
Abstract
Background. Primary blepharospasm (BSP) is one of the most common focal dystonia and its pathophysiological mechanism remains unclear. An unbiased method was used in patients with BSP at rest to observe voxel-wise brain-wide functional connectivity (FC) changes. Method. A total of 48 subjects, including 24 untreated patients with BSP and 24 healthy controls, were recruited to undergo functional magnetic resonance imaging (fMRI). The method of global-brain FC (GFC) was adopted to analyze the resting-state fMRI data. We designed the support vector machine (SVM) method to determine whether GFC abnormalities could be utilized to distinguish the patients from the controls. Results. Relative to healthy controls, patients with BSP showed significantly decreased GFC in the bilateral superior medial prefrontal cortex/anterior cingulate cortex (MPFC/ACC) and increased GFC in the right postcentral gyrus/precentral gyrus/paracentral lobule, right superior frontal gyrus (SFG), and left paracentral lobule/supplement motor area (SMA), which were included in the default mode network (DMN) and sensorimotor network. SVM analysis showed that increased GFC values in the right postcentral gyrus/precentral gyrus/paracentral lobule could discriminate patients from controls with optimal accuracy, specificity, and sensitivity of 83.33%, 83.33%, and 83.33%, respectively. Conclusion. This study suggested that abnormal GFC in the brain areas associated with sensorimotor network and DMN might underlie the pathophysiology of BSP, which provided a new perspective to understand BSP. GFC in the right postcentral gyrus/precentral gyrus/paracentral lobule might be utilized as a latent biomarker to differentiate patients with BSP from controls.