Ciência e Agrotecnologia (Apr 2004)

Variâncias do ponto crítico de equações de regressão quadrática Variances of the critical point of a quadratic regression equation

  • Ceile Cristina Ferreira Nunes,
  • Augusto Ramalho de Morais,
  • Joel Augusto Muniz,
  • Thelma Sáfadi

DOI
https://doi.org/10.1590/S1413-70542004000200020
Journal volume & issue
Vol. 28, no. 2
pp. 389 – 396

Abstract

Read online

Com o presente trabalho teve-se por objetivo a determinação de variâncias para o estudo do ponto crítico de uma equação de regressão de segundo grau, em situações experimentais com diferentes variâncias, por meio de simulação Monte Carlo. Em muitos estudos, teóricos ou aplicados, o pesquisador depara-se com o problema que envolve quociente entre variáveis aleatórias e, principalmente, entre variáveis normais. Como exemplo, aquelas que surgem em pesquisas de dose econômica de nutrientes em experimentos de adubação, de compactação de solos e em outros problemas em que há interesse na variável aleatória , estimador do ponto crítico na regressão . Para estudar a distribuição do ponto crítico de uma equação de regressão quadrática, foram utilizados dados de produção de algodão de 536 ensaios, ajustando-se um modelo quadrático. A estimação dos parâmetros foi feita pelo método dos quadrados mínimos ordinários. Com base nessas estimativas, implementou-se por meio do software MATLAB® uma rotina para simulação de duas séries com 5000 erros aleatórios de distribuição normal de média zero relativos a cada uma das variâncias consideradas teóricas: ou = 0,1; 0,5; 1; 5; 10; 15; 20 e 50. As estimativas da variância do ponto crítico foram obtidas por meio de três métodos: (a) fórmula comum do cálculo de variâncias; (b) fórmula obtida pela diferenciação do estimador do ponto crítico e (c) fórmula demonstrada para o cálculo da variância de uma razão, considerando-se a covariância entre e . Pelos resultados obtidos para as estatísticas médias dos coeficientes de regressão e , bem como suas respectivas variâncias em função das diversas variâncias teóricas () adotadas, verificou-se que esses valores teóricos estão próximos aos reais. Ainda ocorre uma tendência de que, com o aumento da variância teórica, esses valores aumentem. Pode-se concluir que a variância do ponto crítico calculada usando-se a expressão que leva em consideração a covariância entre e apresenta resultados mais satisfatórios e que não segue uma distribuição normal, pois apresenta uma distribuição de freqüência com assimetria positiva e formato leptocúrtico.The aim of this paper is determine variances for the analysis of the critical point of a second-degree regression equation in experimental situations with different variances through Monte Carlo simulation. In many theoretical or applied studies, one finds situations involving ratios of random variables and more frequently normal variables. Examples are provided by variables, which appear in economic dose research of nutrients in fertilization experiments, as well as in other problems in which there are interests in the random variable, estimator of the critic point in the regression . Data of five hundred thirty six trials in cotton yield were utilized to study the distribution of the critical point of a quadratic regression equation by adjusting a quadratic model. The parameters were evaluated using a least square method. From the estimations a MATLAB routine was implemented to simulate two sets with five thousands random errors with normal distribution and zero mean, relative to each of the theoretical variances: or = 0.1; 0.5; 1; 5; 10; 15; 20 and 50. The estimation of the variance of the critical point was obtained by three methods: (a) usual formula for the variance; (b) formula obtained by differentiation of the critical point estimator and (c) formula for the computation of the variance of a quotient by taking into consideration the covariance between and . The results obtained for the statistic average for the regression between e , as well as its respective variances in terms of the several theoretical residual variances () adopted show that those theoretical values are close to real ones. Moreover, there is a trend of increasing and with increase of the theoretical variance. It may be concluded that the critical point variance calculated taking into consideration the covariance between and , gives more satisfactory results and does not follow a normal distribution, presenting a frequency distribution with positive assimetry and leptokurtic shape.

Keywords