IEEE Access (Jan 2023)
A Comparative Evaluation of Deep Learning Techniques for Photovoltaic Panel Detection From Aerial Images
Abstract
Solar energy production has significantly increased in recent years in the European Union (EU), accounting for 12% of the total in 2022. The growth in solar energy production can be attributed to the increasing adoption of solar photovoltaic (PV) panels, which have become cost-effective and efficient means of energy production, supported by government policies and incentives. The maturity of solar technologies has also led to a decrease in the cost of solar energy, making it more competitive with other energy sources. As a result, there is a growing need for efficient methods for detecting and mapping the locations of PV panels. Automated detection can in fact save time and resources compared to manual inspection. Moreover, the resulting information can also be used by governments, environmental agencies and other companies to track the adoption of renewable sources or to optimize energy distribution across the grid. However, building effective models to support the automated detection and mapping of solar photovoltaic (PV) panels presents several challenges, including the availability of high-resolution aerial imagery and high-quality, manually-verified labels and annotations. In this study, we address these challenges by first constructing a dataset of PV panels using very-high-resolution (VHR) aerial imagery, specifically focusing on the region of Piedmont in Italy. The dataset comprises 105 large-scale images, providing more than 9,000 accurate and detailed manual annotations, including additional attributes such as the PV panel category. We first conduct a comprehensive evaluation benchmark on the newly constructed dataset, adopting various well-established deep-learning techniques. Specifically, we experiment with instance and semantic segmentation approaches, such as Rotated Faster RCNN and Unet, comparing strengths and weaknesses on the task at hand. Second, we apply ad-hoc modifications to address the specific issues of this task, such as the wide range of scales of the installations and the sparsity of the annotations, considerably improving upon the baseline results. Last, we introduce a robust and efficient post-processing polygonization algorithm that is tailored to PV panels. This algorithm converts the rough raster predictions into cleaner and more precise polygons for practical use. Our benchmark evaluation shows that both semantic and instance segmentation techniques can be effective for detecting and mapping PV panels. Instance segmentation techniques are well-suited for estimating the localization of panels, while semantic solutions excel at surface delineation. We also demonstrate the effectiveness of our ad-hoc solutions and post-processing algorithm, which can provide an improvement up to +10% on the final scores, and can accurately convert coarse raster predictions into usable polygons.
Keywords