Frontiers in Microbiology (Jun 2019)

Biochemical Characterization of a Novel Monospecific Endo-β-1,4-Glucanase Belonging to GH Family 5 From a Rhizosphere Metagenomic Library

  • Anna Wierzbicka-Woś,
  • Anna Wierzbicka-Woś,
  • Ruth Henneberger,
  • Ruth Henneberger,
  • Ramón Alberto Batista-García,
  • Liliana Martínez-Ávila,
  • Stephen A. Jackson,
  • Stephen A. Jackson,
  • Jonathan Kennedy,
  • Alan D. W. Dobson,
  • Alan D. W. Dobson

DOI
https://doi.org/10.3389/fmicb.2019.01342
Journal volume & issue
Vol. 10

Abstract

Read online

Cellulases have a broad range of different industrial applications, ranging from food and beverages to pulp and paper and the biofuels area. Here a metagenomics based strategy was used to identify the cellulolytic enzyme CelRH5 from the rhizosphere. CelRH5 is a novel monospecific endo-β-1,4-glucanase belonging to the glycosyl hydrolase family 5 (GH5). Structural based modeling analysis indicated that CelRH5 is related to endo-β-1,4-glucanases derived from thermophilic microorganisms such as Thermotoga maritima, Fervidobacterium nodosum, and Ruminiclostridium thermocellum sharing 30-40% amino acid sequence identity. The molecular weight of the enzyme was determined as 40.5 kDa. Biochemical analyses revealed that the enzyme displayed good activity with soluble forms of cellulose as a substrate such as ostazin brilliant red hydroxyethyl cellulose (OBR-HEC), carboxymethylcellulose (CMC), hydroxyethyl cellulose (HEC), and insoluble azurine cross-linked hydroxyethylcellulose (AZCL-HEC). The enzyme shows highest enzymatic activity at pH 6.5 with high pH tolerance, remaining stable in the pH range 4.5–8.5. Highest activity was observed at 40°C, but CelRH5 is psychrotolerant being active and stable at temperatures below 30°C. The presence of the final products of cellulose hydrolysis (glucose and cellobiose) or metal ions such as Na+, K+, Li+, and Mg2+, as well as ethylenediaminetetraacetic acid (EDTA), urea, dithiothreitol (DTT), dimethyl sulfoxide (DMSO), 2-mercaptoethanol (2-ME) or glycerol, did not have a marked effect on CelRH5 activity. However, the enzyme is quite sensitive to the presence of 10 mM ions Zn2+, Ni2+, Co2+, Fe3+ and reagents such as 1 M guanidine HCl, 0.1% sodium dodecyl sulfate (SDS) and 20% ethanol. Given that it is psychrotolerant and retains activity in the presence of final cellulose degradation products, metal ions and various reagents, which are common in many technological processes; CelRH5 may be potential suitability for a variety of different biotechnological applications.

Keywords