Microbial Cell Factories (Aug 2021)

Combining protein and metabolic engineering strategies for biosynthesis of melatonin in Escherichia coli

  • Yanfeng Zhang,
  • Yongzhi He,
  • Nan Zhang,
  • JiaJia Gan,
  • Shan Zhang,
  • Zhiyang Dong

DOI
https://doi.org/10.1186/s12934-021-01662-8
Journal volume & issue
Vol. 20, no. 1
pp. 1 – 13

Abstract

Read online

Abstract Background Melatonin has attracted substantial attention because of its excellent prospects for both medical applications and crop improvement. The microbial production of melatonin is a safer and more promising alternative to chemical synthesis approaches. Researchers have failed to produce high yields of melatonin in common heterologous hosts due to either the insolubility or low enzyme activity of proteins encoded by gene clusters related to melatonin biosynthesis. Results Here, a combinatorial gene pathway for melatonin production was successfully established in Escherichia coli by combining the physostigmine biosynthetic genes from Streptomyces albulus and gene encoding phenylalanine 4-hydroxylase (P4H) from Xanthomonas campestris and caffeic acid 3-O-methyltransferase (COMT) from Oryza sativa. A threefold improvement of melatonin production was achieved by balancing the expression of heterologous proteins and adding 3% glycerol. Further protein engineering and metabolic engineering were conducted to improve the conversion of N-acetylserotonin (NAS) to melatonin. Construction of COMT variant containing C303F and V321T mutations increased the production of melatonin by fivefold. Moreover, the deletion of speD gene increased the supply of S-adenosylmethionine (SAM), an indispensable cofactor of COMT, which doubled the yield of melatonin. In the final engineered strain EcMEL8, the production of NAS and melatonin reached 879.38 ± 71.42 mg/L and 136.17 ± 1.33 mg/L in a shake flask. Finally, in a 2-L bioreactor, EcMEL8 produced 1.06 ± 0.07 g/L NAS and 0.65 ± 0.11 g/L melatonin with tryptophan supplementation. Conclusions This study established a novel combinatorial pathway for melatonin biosynthesis in E. coli and provided alternative strategies for improvement of melatonin production.

Keywords