Journal of Applied Fluid Mechanics (Sep 2022)

Experimental Investigation of Aluminum Oxide Nanofluid on Closed Loop Pulsating Heat Pipe Performance

  • P. Venkataramana,
  • P. Vijayakumar,
  • B. Balakrishna

DOI
https://doi.org/10.47176/jafm.15.06.1324
Journal volume & issue
Vol. 15, no. 6
pp. 1947 – 1955

Abstract

Read online

This paper discusses the experimental studies performed on a single closed loop pulsating heat pipe (CLPHP) to evaluate its thermal performance. The pulsating heat pipe is brass which has a single closed loop. Aluminium oxide (Al2O3) and deionized (DI) water nanofluid were utilized as working fluids, with different volume concentrations of aluminium oxide nanoparticles of 0.05 %, 0.5 % and 1%. The aluminium oxide particles are mixed with water in the two-step method to produce a stable suspension. Experiments are carried out in the horizontal mode with watt loads of heat inputs ranging from 10 w to 100 w. The temperature differences between the evaporator and condenser portions, thermal resistance, heat transfer coefficient and thermal conductivity are the parameters used to determine thermal performance. The thermal resistance of aluminium oxide and DI water nanofluid was the lowest, having 48 % less than that of water. The effective thermal conductivity of the heat pipe improves as the concentration of nanoparticles increases. The comparison between experimental results and computational fluid dynamics (CFD) simulation results CLPHP was carried out under the same condition.

Keywords