Scientific Reports (Nov 2023)

Evaluation of the efficacy of cystinosin supplementation through CTNS mRNA delivery in experimental models for cystinosis

  • Tjessa Bondue,
  • Sante Princiero Berlingerio,
  • Florian Siegerist,
  • Elena Sendino-Garví,
  • Maximilian Schindler,
  • Hans Jacobus Baelde,
  • Sara Cairoli,
  • Bianca Maria Goffredo,
  • Fanny Oliveira Arcolino,
  • Jürgen Dieker,
  • Manoe Jacoba Janssen,
  • Nicole Endlich,
  • Roland Brock,
  • Rik Gijsbers,
  • Lambertus van den Heuvel,
  • Elena Levtchenko

DOI
https://doi.org/10.1038/s41598-023-47085-w
Journal volume & issue
Vol. 13, no. 1
pp. 1 – 14

Abstract

Read online

Abstract Messenger RNA (mRNA) therapies are emerging in different disease areas, but have not yet reached the kidney field. Our aim was to study the feasibility to treat the genetic defect in cystinosis using synthetic mRNA in cell models and ctns −/− zebrafish embryos. Cystinosis is a prototype lysosomal storage disorder caused by mutations in the CTNS gene, encoding the lysosomal cystine-H+ symporter cystinosin, and leading to cystine accumulation in all cells of the body. The kidneys are the first and the most severely affected organs, presenting glomerular and proximal tubular dysfunction, progressing to end-stage kidney failure. The current therapeutic standard cysteamine, reduces cystine levels, but has many side effects and does not restore kidney function. Here, we show that synthetic mRNA can restore lysosomal cystinosin expression following lipofection into CTNS −/− kidney cells and injection into ctns −/− zebrafish. A single CTNS mRNA administration decreases cellular cystine accumulation for up to 14 days in vitro. In the ctns −/− zebrafish, CTNS mRNA therapy improves proximal tubular reabsorption, reduces proteinuria, and restores brush border expression of the multi-ligand receptor megalin. Therefore, this proof-of-principle study takes the first steps in establishing an mRNA-based therapy to restore cystinosin expression, resulting in cystine reduction in vitro and in the ctns −/− larvae, and restoration of the zebrafish pronephros function.