Journal of Analytical Science and Technology (Mar 2022)
Rapid and efficient colorimetric sensing of clindamycin and Fe3+ using controllable phyto-synthesized silver/silver chloride nanoparticles by Syzygium cumini fruit extract
Abstract
Abstract The first evidence of a green, single-step, and additive-free process for the fabrication of silver/silver chloride nanoparticles (Ag/AgCl NPs) by fruit extract of Syzygium cumini (S. cumini) without the usage of any stabilizer and halide source was provided. The formation of nanoparticles was optimized to control the shape, size, and stability via various pHs of the reaction mixture, the quantity of fruit extract, temperature, concentrations of silver ion, and reaction time. The optimal conditions were determined: pH = 7.0, the quantity of the leaf extract = 3.0 mL, silver ion concentration = 1.0 mM, temperature = 60 °C, and incubation time = 40 min. As an application in colorimetric sensing, the ability of the prepared Ag/AgCl NPs to sense clindamycin and Fe3+ ion in an aqueous medium was investigated. The SPR band and color of the solution of Ag/AgCl NPs undergo dramatic changes in exposure to clindamycin with new SPR peaks appearing at 500 nm, accompanied by a color change from yellow to pink due to the aggregation of NPs. Under the optimized pH of 3.0, this sensor was shown a linear dynamic range from 10.0 to 100.0 µM with a LOD of 1.2 µM and good linear relationships (R 2 = 0.99) for clindamycin. On the other hand, the quenching of the SPR peak at 412 nm was used to monitor the Fe3+ ions with wide linear ranges of 10.0–350.0 µM under the optimized pH (pH = 9) with a LOD of 5.6 µM. In addition, the proposed sensor displayed applicability in the real sample containing clindamycin (in capsules and injection ampoules) and Fe3+ ions (in water samples) detection. Graphical Abstract
Keywords