Applied Sciences (Aug 2023)

Effectiveness of Immature Asian Pear Extract on Pulmonary Injury Caused by Particulate Matter in Mice

  • Mi-Ran Kim,
  • Jin-Hwa Lee,
  • Mo-Un Ku,
  • Ki-Young Kim,
  • Su Shin,
  • Eun-Jin Hong,
  • Sae-Kwang Ku,
  • Jae-Suk Choi

DOI
https://doi.org/10.3390/app13179578
Journal volume & issue
Vol. 13, no. 17
p. 9578

Abstract

Read online

The use of natural products in developing respiratory-function-protective pharmaceuticals is actively progressing. However, in this context, the improvement effects of young Asian pear (Pyrus pyrifolia Nakai) extracts have not been evaluated yet. Thus, this study investigated the anti-inflammatory and lung damage improvement effects of immature Asian pear extract (IAP; 400, 200, and 100 mg/kg) using a particulate matter 2.5 μm (PM2.5)-induced sub-acute lung injury mouse model. The experimental results were compared with dexamethasone (0.75 mg/kg), used as a control drug. After two intranasal instillations of PM2.5 and ten doses of IAP extract for eight days, changes in macroscopic lung autopsy, leukocyte fractionation from bronchoalveolar lavage fluid, lung antioxidant defense system, lung histopathology, and mRNA expression in lung tissue were confirmed. Stress-induced inflammatory lung damage through the increased expression of PM2.5-induced PI3K/Akt and p38 MAPK mRNA was significantly suppressed via the administration of IAP extract (400–100 mg/kg). Furthermore, IAP extract administration promoted serous fluid production in lung tissue, increased substance P and ACh levels, and decreased mucus-production-related expression of MUC5AC and MUC5B mRNA. Interestingly, the observed effects showed a dose-dependent manner without serious hepatotoxicity. The results of this study indicate that a proper oral administration of IAP extract could be helpful in protecting against lung diseases, positioning IAP extract as a potential candidate for an alternative agent to safeguard the respiratory system.

Keywords