Foods (Jan 2023)

Non-Destructive Detection of Meat Quality Based on Multiple Spectral Dimension Reduction Methods by Near-Infrared Spectroscopy

  • Xiaochun Zheng,
  • Li Chen,
  • Xin Li,
  • Dequan Zhang

DOI
https://doi.org/10.3390/foods12020300
Journal volume & issue
Vol. 12, no. 2
p. 300

Abstract

Read online

The potential of four dimension reduction methods for near-infrared spectroscopy was investigated, in terms of predicting the protein, fat, and moisture contents in lamb meat. With visible/near-infrared spectroscopy at 400–1050 nm and 900–1700 nm, respectively, calibration models using partial least squares regression (PLSR) or multiple linear regression (MLR) between spectra and quality parameters were established and compared. The MLR prediction models for all three quality parameters based on the wavelengths selected by stepwise regression achieved the best results in the spectral region of 400–1050 nm. As for the spectral region of 900–1700 nm, the PLSR prediction model based on the raw spectra or high-correlation spectra achieved better results. The results of this study indicate that sampling interval shortening and of peak-to-trough jump features are worthy of further study, due to their great potential in explaining the quality parameters.

Keywords