Cell Reports (Apr 2018)
Manifold Roles of CCR7 and Its Ligands in the Induction and Maintenance of Bronchus-Associated Lymphoid Tissue
Abstract
Summary: The processes underlying the development and maintenance of tertiary lymphoid organs are incompletely understood. Using a Ccr7 knockout/knockin approach, we show that spontaneous bronchus-associated lymphoid tissue (BALT) formation can be caused by CCR7-mediated migration defects of dendritic cells (DCs) in the lung. Plt/plt mice that lack the CCR7 ligands CCL19 and CCL21-serine do not form BALT spontaneously because lung-expressed CCL21-leucine presumably suffices to maintain steady-state DC egress. However, plt/plt mice are highly susceptible to modified vaccinia virus infection, showing enhanced recruitment of immune cells as well as alterations in CCR7-ligand-mediated lymphocyte egress from the lungs, leading to dramatically enhanced BALT. Furthermore, we identify two independent BALT homing routes for blood-derived lymphocytes. One is HEV mediated and depends on CCR7 and L-selectin, while the second route is via the lung parenchyma and is independent of these molecules. Together, these data provide insights into CCR7/CCR7-ligand-orchestrated aspects in BALT formation. : Fleige et al. demonstrate that CCR7 and its ligands CCL19, CCL21-serine, and CCL21-leucine orchestrate multiple steps during induction and maintenance of bronchus-associated lymphoid tissue (BALT) including DC-based initial developmental processes as well as homing of blood-derived lymphocytes via HEVs to established BALT. Keywords: BALT, CCR7, CCL21, DCs, MVA, plt/plt, HEVs