Annals of Clinical and Translational Neurology (Jan 2020)

Nigrosome 1 imaging in REM sleep behavior disorder and its association with dopaminergic decline

  • Thomas R. Barber,
  • Ludovica Griffanti,
  • Kevin M. Bradley,
  • Daniel R. McGowan,
  • Christine Lo,
  • Clare E. Mackay,
  • Michele T. Hu,
  • Johannes C. Klein

DOI
https://doi.org/10.1002/acn3.50962
Journal volume & issue
Vol. 7, no. 1
pp. 26 – 35

Abstract

Read online

Abstract Objectives Rapid eye movement sleep behavior disorder (RBD) patients have a high risk of developing a Parkinsonian disorder, offering an opportunity for neuroprotective intervention. Predicting near‐term conversion, however, remains a challenge. Dopamine transporter imaging, while informative, is expensive and not widely available. Here, we investigate the utility of susceptibility‐weighted MRI (SWI) to detect abnormalities of the substantia nigra in RBD, and explore their association with striatal dopaminergic deficits. Methods SWI of the substantia nigra was performed in 46 RBD patients, 27 Parkinson’s patients, and 32 control subjects. Dorsal nigral hyperintensity (DNH) was scored by two blinded raters, and separately quantified using a semiautomated process. Forty‐two RBD patients were also imaged with 123I‐ioflupane single‐photon emission computed tomography (DaT SPECT/CT). Results Consensus visual DNH classification was possible in 87% of participants. 27.5% of RBD patients had lost DNH, compared with 7.7% of control subjects and 96% of Parkinson’s patients. RBD patients lacking DNH had significantly lower putamen dopaminergic SPECT/CT activity compared to RBD patients with DNH present (specific uptake ratios 1.89 vs. 2.33, P = 0.002). The mean quantified DNH signal intensity declined in a stepwise pattern, with RBD patients having lower intensity than controls (0.837 vs. 0.877, P = 0.01) but higher than PD patients (0.837 vs. 0.765, P < 0.001). Interpretation Over one quarter of RBD patients have abnormal substantia nigra SWI reminiscent of Parkinson’s, which is associated with a greater dopaminergic deficit. This modality may help enrich neuroprotective trials with early converters.