Reviews on Advanced Materials Science (Jul 2021)
Effect of PVA fiber on mechanical properties of fly ash-based geopolymer concrete
Abstract
The effects of polyvinyl alcohol (PVA) fiber content on mechanical and fracture properties of geopolymer concrete (GPC) were investigated in the present study. Mechanical properties include cubic compressive, prism compressive, tensile and flexural strengths, and elastic modulus. The evaluation indices in fracture properties were measured by using the three-point bending test. Geopolymer was prepared by fly ash, metakaolin, and alkali activator, which was obtained by mixing sodium hydroxide and sodium silicate solutions. The volume fractions of PVA fiber (length 12 mm and diameter 40 μm) were 0, 0.2, 0.4, 0.6, 0.8, and 1.0%. The results indicate that the effects of the PVA fiber on the cubic and prism compressive strengths and elastic modulus are similar. A tendency of first increasing and then decreasing with the increase in the PVA fiber content was observed in these properties. They all reached a maximum at 0.2% PVA fiber content. There was also a similar tendency of first increase and then decrease for tensile and flexural strengths, peak load, critical effective crack lengths, fracture toughness, and fracture energy of GPC, which were significantly improved by the PVA fiber. They reached a maximum at 0.8% PVA fiber content, except the tensile strength whose maximum was at 1.0% PVA fiber volume fraction. Considering the parameters analyzed, it seems that the 0.8% PVA fiber content provides optimal reinforcement of the mechanical properties of GPC.
Keywords