Science and Technology of Advanced Materials (Dec 2024)

Iodonium-based pro-adhesive layers for robust adhesion of PEDOT:PSS to surfaces

  • Szymon Smołka,
  • Taral Patel,
  • Sandra Pluczyk-Małek,
  • Roman Turczyn,
  • Katarzyna Krukiewicz

DOI
https://doi.org/10.1080/14686996.2024.2338786
Journal volume & issue
Vol. 25, no. 1

Abstract

Read online

ABSTRACTElectrochemical grafting of organic molecules to metal surfaces has been well-known as an efficient tool enabling tailored modification of surface at the nanoscale. Among many compounds with the ability to undergo the process of electrografting, iodonium salts belong to less frequently used, especially when compared with the most popular diazonium salts. Meanwhile, due to their increased stability, iodonium salts may be used in situations where the use of diazonium salts is constrained. The aim of this study was to examine the effect of the electrochemical reduction of iodonium salts on the physicochemical properties of Pt electrodes, and the possibility to form pro-adhesive layers facilitating further functionalization purposes. Consequently, we have selected four commercially available iodonium salts (diphenyliodonium chloride, bis(4-tertbutylphenyl)iodonium hexafluorophosphate, (4-nitrophenyl)(2,4,6-trimethylphenyl)iodonium triflate, bis(4-methylphenyl)iodonium hexafluorophosphate), and attached them to the surface of Pt electrodes by means of an electrochemical reduction process. As-formed layers were then extensively characterized in terms of wettability, roughness and charge transfer properties, and used as pro-adhesive coatings prior to the deposition of poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate), PEDOT:PSS. Due to the increase in hydrophilicity and roughness, modified electrodes increased the stability of PEDOT:PSS coating while maintaining its high capacitance.

Keywords