Journal of Dairy Science (Aug 2023)
Effect of nitrate supplementation, dietary protein supply, and genetic yield index on performance, methane emission, and nitrogen efficiency in dairy cows
Abstract
ABSTRACT: The objective was to investigate the effect of nonprotein nitrogen source, dietary protein supply, and genetic yield index on methane emission, N metabolism, and ruminal fermentation in dairy cows. Forty-eight Danish Holstein dairy cows (24 primiparous cows and 24 multiparous cows) were used in a 6 × 4 incomplete Latin square design with 4 periods of 21-d duration. Cows were fed ad libitum with the following 6 experimental diets: diets with low, medium, or high rumen degradable protein (RDP):rumen undegradable protein (RUP) ratio (manipulated by changing the proportion of corn meal, corn gluten meal, and corn gluten feed) combined with either urea or nitrate (10 g NO3−/kg of dry matter) as nonprotein nitrogen source. Samples of ruminal fluid and feces were collected from multiparous cows, and total-tract nutrient digestibility was estimated using TiO2 as flow marker. Milk samples were collected from all 48 cows. Gas emission (CH4, CO2, and H2) was measured by 4 GreenFeed units. We observed no significant interaction between dietary RDP:RUP ratio and nitrate supplementation, and between nitrate supplementation and genetic yield index on CH4 emission (production, yield, intensity). As dietary RDP:RUP ratio increased, intake of crude protein, RDP, and neutral detergent fiber and total-tract digestibility of crude protein linearly increased, and RUP intake linearly decreased. Yield of milk, energy-corrected milk, and milk protein and lactose linearly decreased, whereas milk fat and milk urea nitrogen concentrations linearly increased as dietary RDP:RUP ratio increased. The increase in dietary RDP:RUP ratio resulted in a linear increase in the excretion of total purine derivatives and N in urine, but a linear decrease in N efficiency (milk N in % of N intake). Nitrate supplementation reduced dry matter intake (DMI) and increased total-tract organic matter digestibility compared with urea supplementation. Nitrate supplementation resulted in a greater reduction in DMI and daily CH4 production and a greater increase in daily H2 production in multiparous cows compared with primiparous cows. Nitrate supplementation also showed a greater reduction in milk protein and lactose yield in multiparous cows than in primiparous cows. Milk protein and lactose concentrations were lower for cows receiving nitrate diets compared with cows receiving urea diets. Nitrate supplementation reduced urinary purine derivatives excretion from the rumen, whereas N efficiency tended to increase. Nitrate supplementation reduced proportion of acetate and propionate in ruminal volatile fatty acids. In conclusion, no interaction was observed between dietary RDP:RUP ratio and nitrate supplementation, and no interaction between nitrate supplementation and genetic yield index on CH4 emission (production, yield, intensity) was noted. Nitrate supplementation resulted in a greater reduction in DMI and CH4 production, and a greater increase in H2 production in multiparous cows than in primiparous cows. As the dietary RDP:RUP ratio increased, CH4 emission was unaffected and RDP intake increased, but RUP intake and milk yield decreased. Genetic yield index did not affect CH4 production, yield, or intensity.