Analele Stiintifice ale Universitatii Ovidius Constanta: Seria Matematica (May 2012)
Riesz potential on the Heisenberg group and modified Morrey spaces
Abstract
In this paper we study the fractional maximal operator Mα, 0 ≤ α < Q and the Riesz potential operator ℑα, 0 < α < Q on the Heisenberg group in the modified Morrey spaces L͂p,λ(ℍn), where Q = 2n + 2 is the homogeneous dimension on ℍn. We prove that the operators Mα and ℑα are bounded from the modified Morrey space L͂1,λ(ℍn) to the weak modified Morrey space WL͂q,λ(ℍn) if and only if, α/Q ≤ 1 - 1/q ≤ α/(Q - λ) and from L͂p,λ(ℍn) to L͂q,λ(ℍn) if and only if, α/Q ≤ 1/p - 1/q ≤ α/(Q - λ).
Keywords