Cellular and Molecular Gastroenterology and Hepatology (Jan 2020)

Tight Junction Protein Claudin-7 Is Essential for Intestinal Epithelial Stem Cell Self-Renewal and DifferentiationSummary

  • Tiaosi Xing,
  • Lesley Jasmine Benderman,
  • Stephiya Sabu,
  • Joel Parker,
  • Jeffrey Yang,
  • Qun Lu,
  • Lei Ding,
  • Yan-Hua Chen

Journal volume & issue
Vol. 9, no. 4
pp. 641 – 659

Abstract

Read online

Background & Aims: Claudin-7 (Cldn7) is a tight junction (TJ) membrane protein located at the apical TJ and basolateral side of intestinal epithelial cells. Deletion of Cldn7 by gene targeting leads to the inflammatory bowel disease–like phenotype in mice, which includes weight loss, diarrhea, mucosa ulceration, and severe intestinal epithelial damage. In this study, we test our hypothesis that Cldn7 plays a critical role in regulating intestinal crypt stem cell functions. Methods: Gene expression microarray, quantitative reverse-transcription polymerase chain reaction, in situ hybridization, histologic examinations, immunoblotting, 3-dimensional organoid culture, and various treatments to rescue Cldn7-deficient organoid defects were conducted using global Cldn7 knockout mice and inducible, conditional Cldn7 knockout mice. Results: Gene deletion of Cldn7 in intestines showed significant alteration of expression profiles with striking down-regulation of intestinal crypt stem cell markers such as Olfm4, dislocated proliferative cells, and disrupted epithelial cell differentiation. In addition, the isolated Cldn7-deficient crypts where the stem cells reside were either unable to survive at all or formed defective spheroids, highlighting the functional impairment of crypt stem cells in the absence of Cldn7. Remarkably, the Cldn7-expressing organoids with buddings underwent rapid cell degeneration within days after turning off Cldn7 expression in the culture. We identified that activation of Wnt/β-catenin signaling rescued the organoid defects caused by Cldn7 deletion. Conclusions: In this study, we show that Cldn7 is indispensable in controlling Wnt/β-catenin signaling–dependent intestinal epithelial stem cell survival, self-renewal, and cell differentiation. This study could open a door to study roles of TJ proteins in stem cell regulations in other tissues and organs.

Keywords