BMC Pulmonary Medicine (May 2024)

Risk factors of immune checkpoint inhibitor-related pneumonitis after neoadjuvant immunochemotherapy for resectable NSCLC

  • Zhirong Mao,
  • Guanchao Pang,
  • Xiaojie Huang,
  • Xiuxiu Chen,
  • Jiaji Wu,
  • Xia Xu,
  • Zhihua Teng,
  • Yanbin Tan,
  • Pingli Wang

DOI
https://doi.org/10.1186/s12890-024-03041-6
Journal volume & issue
Vol. 24, no. 1
pp. 1 – 13

Abstract

Read online

Abstract Background The incidence of checkpoint inhibitor-associated pneumonitis (CIP) in advanced non-small cell lung cancer (NSCLC) has been substantiated through large-scale clinical trials or real-world studies. However, reports on CIP incidence within the context of neoadjuvant immunotherapy for resectable NSCLC remain scarce. This study endeavors to investigate the incidence, risk factors, and outcomes of CIP in patients with resectable NSCLC receiving neoadjuvant immunochemotherapy. Methods A retrospective, case-control study was conducted on patients diagnosed with NSCLC stages IIA–IIIB who received neoadjuvant immunochemotherapy between January 2018 and September 2022. Patients were stratified into two groups based on the presence or absence of CIP, facilitating a comparative analysis of clinical characteristics, treatment modalities, physiological indicators, and prognostic outcomes . Results The study cohort comprised 245 patients, with 11.4% (28/245) experiencing CIP. The median period of CIP onset was 70 (range, 40–221) days. The incidence of severe CIP (grade 3–4) was 3.7% (9/245). Patients with CIP showed a higher all-cause mortality rate of 21.4% (6/28) compared to that of patients without CIP. Those who developed CIP exhibited elevated body mass index (BMI) values (p = 0.028) and increased fibrinogen (FIB) levels (p < 0.001), alongside a significant decrease in both diffusing capacity for carbon monoxide (DLCO)% pred (p = 0.001) and DLCO/VA% pred (p = 0.021) after neoadjuvant therapy compared to pre-indicators. Receiver operating characteristic curve (ROC) analysis showed that the area under the ROC curve of three assessed variables (FIB levels, BMI, DLCO) reached 0.806 in predicting CIP occurrence at an early stage. Conclusions This cohort demonstrated that elevated BMI, increased FIB levels, and decreased pulmonary diffusion function after neoadjuvant therapy are risk factors of CIP occurrence. Early assessment and continuous monitoring of these indicators are imperative for the predictive identification of CIP, enhancing patient management and outcomes.

Keywords