C (Nov 2018)
Physicochemical Properties of Activated Carbon: Their Effect on the Adsorption of Pharmaceutical Compounds and Adsorbate–Adsorbent Interactions
Abstract
The adsorption of salicylic acid, acetaminophen, and methylparaben (pharmaceutical products derived from phenol) on carbons activated with different surface chemistries was carried out. We evaluated the effect of the physicochemical properties of the adsorbent and adsorbates on the adsorption capacity. A study of the adsorbate⁻adsorbent interactions via immersion calorimetry in the analytes solutions at different concentrations was included, in addition to the equilibrium data analysis. The results show that the pharmaceutical compounds (2.28⁻0.71 mmol g−1) have lower adsorption capacities in the activated carbon with the highest content of oxygenated groups (acids), while the activated carbons with amphoteric characteristics increase the capacities of adsorption (2.60⁻1.38 mmol g−1). This behavior may be associated with the increased affinity between the adsorbent and solvent due to the presence of polar groups, which was corroborated by the high immersion enthalpy value in water (ΔHimmH2O = −66.6 J g−1). The equilibrium data, adjusted to the Freundlich adsorption model, indicated that the heterogeneous adsorption processes involve immersion enthalpy values between −9.42 and −24.3 J g−1.
Keywords