Sensors (Jun 2021)

An Ensemble Learning Method for Robot Electronic Nose with Active Perception

  • Shengming Li,
  • Lin Feng,
  • Yunfei Ge,
  • Li Zhu,
  • Liang Zhao

DOI
https://doi.org/10.3390/s21113941
Journal volume & issue
Vol. 21, no. 11
p. 3941

Abstract

Read online

The electronic nose is the olfactory organ of the robot, which is composed of a large number of sensors to perceive the smell of objects through free diffusion. Traditionally, it is difficult to realize the active perception function, and it is difficult to meet the requirements of small size, low cost, and quick response that robots require. In order to address these issues, a novel electronic nose with active perception was designed and an ensemble learning method was proposed to distinguish the smell of different objects. An array of three MQ303 semiconductor gas sensors and an electrochemical sensor DART-2-Fe5 were used to construct the novel electronic nose, and the proposed ensemble learning method with four algorithms realized the active odor perception function. The experiment results verified that the accuracy of the active odor perception can reach more than 90%, even though it used 30% training data. The novel electronic nose with active perception based on the ensemble learning method can improve the efficiency and accuracy of odor data collection and olfactory perception.

Keywords