Toxicology Reports (Jan 2020)

Simultaneous blood and brain microdialysis in a free-moving mouse to test blood-brain barrier permeability of chemicals

  • Toyoshi Umezu,
  • Tomoharu Sano,
  • Junko Hayashi,
  • Yasuyuki Shibata

Journal volume & issue
Vol. 7
pp. 1542 – 1550

Abstract

Read online

Neurotoxic chemicals that pass through the blood-brain barrier (BBB) can influence brain function. Efficient methods to test the permeability of the BBB to specific chemicals would facilitate identification of potentially neurotoxic agents. We report here a simultaneous blood and brain microdialysis in a free-moving mouse to test BBB permeability of different chemicals. Microdialysis sampling was conducted in mice at 3–5 days after implantation of a brain microdialysis probe and 1 day after implantation of a blood microdialysis probe. Therefore, mice were under almost physiological conditions. Results of an intravenous injection of lucifer yellow or uranine showed that the BBB was functioning in the mice under the experimental conditions. Mice were given phenyl arsenic compounds orally, and concentration-time profiles for phenyl arsenic compounds such as diphenylarsinic acid, phenylarsonic acid, and phenylmethylarsinic acid in the blood and brain dialysate samples were obtained using simultaneous blood and brain microdialysis coupled with liquid chromatography-tandem mass spectrometry. Peak area-time profiles for linalool and 2-phenethyl alcohol (fragrance compounds or plant-derived volatile organic chemicals) were obtained using simultaneous blood and brain microdialysis coupled with gas chromatography-mass spectrometry in mice given lavender or rose essential oils intraperitoneally. BBB function was confirmed using lucifer yellow in these mice, and results indicated that the phenyl arsenic compounds, linalool and 2-phenethyl alcohol, passed through the BBB. The present study demonstrates that simultaneous blood and brain microdialysis in a free-moving mouse makes it possible to test the BBB permeability of chemicals when coupled with appropriate chemical analysis methods.

Keywords