Materials (Apr 2022)

Evaluation of Tensile Bond Strength between Self-Adhesive Resin Cement and Surface-Pretreated Zirconia

  • Mijoo Kim,
  • Reuben H. Kim,
  • Samuel C. Lee,
  • Thomas K. Lee,
  • Marc Hayashi,
  • Bo Yu,
  • Deuk-Won Jo

DOI
https://doi.org/10.3390/ma15093089
Journal volume & issue
Vol. 15, no. 9
p. 3089

Abstract

Read online

The tensile bond strength between zirconia subjected to different surface-pretreatment methods and methacryloyloxydecyl-dihydrogen-phosphate (MDP)-containing self-adhesive resin cement was evaluated herein. Eighty-eight cylindrical zirconia specimens were randomly divided into the following four groups based on the pretreatment method: (1) no treatment, (2) air abrasion, (3) HNO3/HF etching, and (4) zirconia-nanoparticle coating. The tensile bond strength of the zirconia–resin-cement complexes was investigated. One-way ANOVA and post hoc tests were performed at a 95% significance level, and the Weibull modulus was calculated. Fracture patterns were visualized by SEM. The surface roughness of the specimens without resin bonding was evaluated by AFM. The tensile bond strength of the specimens decreased as follows: Groups 3 > 4 > 2 > 1 (28.2 ± 6.6, 26.1 ± 5.7, 16.6 ± 3.3, and 13.9 ± 3.0 MPa, respectively). Groups 3 and 4 had significantly higher tensile bond strengths (p 3/HF etching or ZrO2-nanoparticle coating than after air abrasion or no treatment. The estimated surface roughness decreased as follows: Groups 3 > 4 > 2 > 1. The combination of zirconia pretreated with HNO3/HF etching or ZrO2-nanoparticle coating and an MDP-containing self-adhesive resin cement can increase the clinical longevity of zirconia restorations by preventing their decementation.

Keywords