Design and Implementation of a Microcontroller Based Active Controller for the Synchronization of the Petrzela Chaotic System
Raúl Rivera-Blas,
Salvador Antonio Rodríguez Paredes,
Luis Armando Flores-Herrera,
Ignacio Adrián Romero
Affiliations
Raúl Rivera-Blas
Instituto Politécnico Nacional, Escuela Superior de Ingeniería Mecánica y Eléctrica, Unidad Azcapotzalco, Sección de Estudios de Posgrado e Investigación, Av. Granjas No. 682, Col. Santa Catarina, Ciudad de México C.P. 02250, Mexico
Salvador Antonio Rodríguez Paredes
Instituto Politécnico Nacional, Escuela Superior de Ingeniería Mecánica y Eléctrica, Unidad Azcapotzalco, Sección de Estudios de Posgrado e Investigación, Av. Granjas No. 682, Col. Santa Catarina, Ciudad de México C.P. 02250, Mexico
Luis Armando Flores-Herrera
Instituto Politécnico Nacional, Escuela Superior de Ingeniería Mecánica y Eléctrica, Unidad Azcapotzalco, Sección de Estudios de Posgrado e Investigación, Av. Granjas No. 682, Col. Santa Catarina, Ciudad de México C.P. 02250, Mexico
Ignacio Adrián Romero
Instituto Politécnico Nacional, Escuela Superior de Ingeniería Mecánica y Eléctrica, Unidad Azcapotzalco, Sección de Estudios de Posgrado e Investigación, Av. Granjas No. 682, Col. Santa Catarina, Ciudad de México C.P. 02250, Mexico
This paper presents an active control design for the synchronization of two identical Petrzela chaotic systems (Petrzela, J.; Gotthans, T. New chaotic dynamical system with a conic-shaped equilibrium located on the plane structure. Applied Sciences. 2017, 7, 976) on master-slave configuration. For the active control, the parameters of both systems are assumed to be a priori known, the control law by means of the dynamic of the error synchronization is designed to guarantee the convergence to zero of error states and the synchronization process is verified by numerical simulation. By taking advantage of the execution and implementation facilities of microcontroller based chaotic systems in digital devices, the active controller is implemented in a 32 bits ARM microcontroller. The experimental results were obtained by using the fourth order Runge-Kutta numerical method to integrate the differential equations of the controller, where the results were measured with a digital oscilloscope.