Insects (Nov 2020)

Co-Expression of a Homologous Cytochrome P450 Reductase Is Required for In Vivo Validation of the <i>Tetranychus urticae</i> CYP392A16-Based Abamectin Resistance in <i>Drosophila</i>

  • Maria Riga,
  • Aris Ilias,
  • John Vontas,
  • Vassilis Douris

DOI
https://doi.org/10.3390/insects11120829
Journal volume & issue
Vol. 11, no. 12
p. 829

Abstract

Read online

Overexpression of the cytochrome P450 monooxygenase CYP392A16 has been previously associated with abamectin resistance using transcriptional analysis in the two-spotted spider mite Tetranychus urticae, an important pest species worldwide; however, this association has not been functionally validated in vivo despite the demonstrated ability of CYP392A16 to metabolize abamectin in vitro. We expressed CYP392A16 in vivo via a Gal4 transcription activator protein/Upstream Activating Sequence (GAL4/UAS) system in Drosophila melanogaster flies, driving expression with detoxification tissue-specific drivers. We demonstrated that CYP392A16 expression confers statistically significant abamectin resistance in toxicity bioassays in Drosophila only when its homologous redox partner, cytochrome P450 reductase (TuCPR), is co-expressed in transgenic flies. Our study shows that the Drosophila model can be further improved, to facilitate the functional analysis of insecticide resistance mechanisms acting alone or in combination.

Keywords