IJCoL (Dec 2015)
An Exploration of Semantic Features in an Unsupervised Thematic Fit Evaluation Framework
Abstract
Thematic fit is the extent to which an entity fits a thematic role in the semantic frame of an event, e.g., how well humans would rate “knife” as an instrument of an event of cutting. We explore the use of the SENNA semantic role-labeller in defining a distributional space in order to build an unsupervised model of event-entity thematic fit judgements. We test a number of ways of extracting features from SENNA-labelled versions of the ukWaC and BNC corpora and identify tradeoffs. Some of our Distributional Memory models outperform an existing syntax-based model (TypeDM) that uses hand-crafted rules for role inference on a previously tested data set. We combine the results of a selected SENNA-based model with TypeDM’s results and find that there is some amount of complementarity in what a syntactic and a semantic model will cover. In the process, we create a broad-coverage semantically-labelled corpus.