Complexity (Jan 2021)

Investigation of ANN Architecture for Predicting Load-Carrying Capacity of Castellated Steel Beams

  • Thuy-Anh Nguyen,
  • Hai-Bang Ly,
  • Van Quan Tran

DOI
https://doi.org/10.1155/2021/6697923
Journal volume & issue
Vol. 2021

Abstract

Read online

Castellated steel beams (CSB) are an attractive option for the steel construction industry thanks to outstanding advantages, such as the ability to exceed large span, lightweight, and allowing flexible arrangement of the technical pipes through beams. In addition, the complex localized and global failures characterizing these structural members have led researchers to focus on the development of efficient design guidelines. This paper aims to propose an artificial neural network (ANN) model with optimal architecture to predict the load-carrying capacity of CSB with a scheme of the simple beam bearing load located at the center of the beam. The ANN model is built with 9 input variables, which are essential parameters equivalent to the geometrical properties and mechanical properties of the material, such as the overall depth of the castellated beam, the vertical projection of the inclined side of the opening, the web thickness, the flange width, the flange thickness, the width of web post at middepth, the horizontal projection of inclined side of the opening, the minimum web yield stress, and the minimum flange yield stress. The output variable is the load-carrying capacity of the CSB. With the optimal ANN architecture [9-1-1] containing one hidden layer, the performance of the ANN model is evaluated based on statistical criteria such as R2, RMSE, and MAE. The results show that the optimal ANN model is a highly effective predictor of the load-carrying capacity of the CSB with the best value of R2 = 0.989, RMSE = 3.328, and MAE = 2.620 for the testing part. The ANN model seems to be the best algorithm of machine learning for predicting the CSB load-carrying capacity.