Frontiers in Plant Science (Jul 2020)

NDVI Changes Show Warming Increases the Length of the Green Season at Tundra Communities in Northern Alaska: A Fine-Scale Analysis

  • Jeremy L. May,
  • Robert D. Hollister,
  • Katlyn R. Betway,
  • Jacob A. Harris,
  • Craig E. Tweedie,
  • Jeffrey M. Welker,
  • Jeffrey M. Welker,
  • William A. Gould,
  • Steven F. Oberbauer

DOI
https://doi.org/10.3389/fpls.2020.01174
Journal volume & issue
Vol. 11

Abstract

Read online

A warming Arctic has been associated with increases in aboveground plant biomass, specifically shrubs, and changes in vegetation cover. However, the magnitude and direction of changes in NDVI have not been consistent across different tundra types. Here we examine the responsiveness of fine-scale NDVI values to experimental warming at eight sites in northern Alaska, United States. Warming in our eight sites ranged in duration from 2‑23 seasons. Dry, wet and moist tundra communities were monitored for canopy surface temperatures and NDVI in ambient and experimentally-warmed plots at near-daily frequencies during the summer of 2017 to assess the impact of the warming treatment on the magnitude and timing of greening. Experimental warming increased canopy-level surface temperatures across all sites (+0.47 to +3.14˚C), with the strongest warming effect occurring during June and July and for the southernmost sites. Green-up was accelerated by warming at six sites, and autumn senescence was delayed at five sites. Warming increased the magnitude of peak NDVI values at five sites, decreased it at one site, and at two sites it did not change. Warming resulted in earlier peak NDVI at three sites and no significant change in the other sites. Shrub and graminoid cover was positively correlated with the magnitude of peak NDVI (r=0.37 to 0.60) while cryptogam influence was mixed. The magnitude and timing of peak NDVI showed considerable variability across sites. Warming extended the duration of the summer green season at most sites due to accelerated greening in the spring and delayed senescence in the autumn. We show that in a warmer Arctic (as simulated by our experiment) the timing and total period of carbon gain may change. Our results suggest these changes are dependent on community composition and abundance of specific growth forms and therefore will likely impact net primary productivity and trophic interactions.

Keywords