Emergent Scientist (Jan 2022)
Spatial distribution of air bubbles created by an imping water jet into a free water surface
Abstract
In this paper we study the rise to the surface, radial motion and disappearance of the bubbles created by a water jet pouring into a container, in particular their density at the surface as a function of the impact velocity. We first focus on their emergence radius at the surface which follows a log-normal distribution. Next, we establish experimentally a law relating the bubble velocity to the distance to the jet. We also investigate their disappearance, caused at low density mainly by explosion, and at high density predominantly by coalescence. Finally, we build an accurate model for the density of bubbles.
Keywords