Nature Communications (Nov 2017)

Visual analysis of mass cytometry data by hierarchical stochastic neighbour embedding reveals rare cell types

  • Vincent van Unen,
  • Thomas Höllt,
  • Nicola Pezzotti,
  • Na Li,
  • Marcel J. T. Reinders,
  • Elmar Eisemann,
  • Frits Koning,
  • Anna Vilanova,
  • Boudewijn P. F. Lelieveldt

DOI
https://doi.org/10.1038/s41467-017-01689-9
Journal volume & issue
Vol. 8, no. 1
pp. 1 – 10

Abstract

Read online

Single cell profiling yields high dimensional data of very large numbers of cells, posing challenges of visualization and analysis. Here the authors introduce a method for analysis of mass cytometry data that can handle very large datasets and allows their intuitive and hierarchical exploration.