Jurnal Elkomika (Oct 2022)

Development of an Omni Directional based Mobile Robot Navigation System using Optimized-Fuzzy Social Force Model

  • ANUGERAH WIBISANA,
  • BIMA SENA BAYU DEWANTARA,
  • DADET PRAMADIHANTO

DOI
https://doi.org/10.26760/elkomika.v10i4.961
Journal volume & issue
Vol. 10, no. 4

Abstract

Read online

ABSTRAK Membangun sebuah sistem navigasi pada mobile robot yang bergerak di ruang sosial perlu memperhatikan beberapa aspek krusial, seperti menghindari rintangan, menjaga arah hadap robot ke tujuan, dan mencapai tujuan dengan cepat. Penelitian ini bertujuan untuk mengembangkan sistem navigasi pada Omnidirectional mobile robot menggunakan Fuzzy-Social Force Model (FSFM). Social Force Model (SFM) mampu menggerakan robot ke tujuan sambil menghindari rintangan. Fuzzy Inference System (FIS) digunakan untuk menghasilkan gain adaptif sebagai salah satu parameter SFM agar respon SFM sesuai dengan masukan dari sensor lidar. Aturan FIS dioptimasi agar mendapatkan nilai optimal menggunakan Particle Swarm Optimization (PSO). Dari hasil percobaan, mobile robot mencapai tujuan lebih cepat dengan selisih 1.59 s dan nilai error heading robot lebih kecil 0.9261 dibandingkan FSFM tanpa optimasi. Kata kunci: Sistem Navigasi, Mobile Robot, Fuzzy-Social Force Model, Optimasi, Particle Swarm Optimization ABSTRACT Building a navigation system on a mobile robot moves in social space needs to consider several crucial aspects, such as avoiding obstacles, keeping the robot facing the destination, and reaching the destination quickly. This study aims to develop a navigation system on an Omnidirectional mobile robot using the Fuzzy-Social Force Model (FSFM). The Social Force Model (SFM) guides the mobile robot to its destination while avoiding obstacles. The Fuzzy Inference System (FIS) produces adaptive gain as one of the SFM parameters so that the response of the SFM matches the data of the lidar sensor. The rule base of FIS is optimized to get the optimal value using Particle Swarm Optimization (PSO). From the experimental results, mobile robots reach the destination faster with a difference of 1.59 s and a minor error in robot heading of 0.9261 compared to FSFM without optimization. Keywords: Navigation System, Mobile Robot, Fuzzy-Social Force Model, Optimization, Particle Swarm Optimization

Keywords