Scientific Reports (Jul 2024)

Interpretable machine learning for the prediction of death risk in patients with acute diquat poisoning

  • Huiyi Li,
  • Zheng Liu,
  • Wenming Sun,
  • Tiegang Li,
  • Xuesong Dong

DOI
https://doi.org/10.1038/s41598-024-67257-6
Journal volume & issue
Vol. 14, no. 1
pp. 1 – 8

Abstract

Read online

Abstract The aim of this study was to develop and validate predictive models for assessing the risk of death in patients with acute diquat (DQ) poisoning using innovative machine learning techniques. Additionally, predictive models were evaluated through the application of SHapley Additive ExPlanations (SHAP). A total of 201 consecutive patients from the emergency departments of the First Hospital and Shengjing Hospital of China Medical University admitted for deliberate oral intake of DQ from February 2018 to August 2023 were analysed. The initial clinical data of the patients with acute DQ poisoning were collected. Machine learning methods such as logistic regression, random forest, support vector machine (SVM), and gradient boosting were applied to build the prediction models. The whole sample was split into a training set and a test set at a ratio of 8:2. The performances of these models were assessed in terms of discrimination, calibration, and clinical decision curve analysis (DCA). We also used the SHAP interpretation tool to provide an intuitive explanation of the risk of death in patients with DQ poisoning. Logistic regression, random forest, SVM, and gradient boosting models were established, and the areas under the receiver operating characteristic curves (AUCs) were 0.91, 0.98, 0.96 and 0.94, respectively. The net benefits were similar across all four models. The four machine learning models can be reliable tools for predicting death risk in patients with acute DQ poisoning. Their combination with SHAP provides explanations for individualized risk prediction, increasing the model transparency.

Keywords