Nature Communications (Aug 2025)
Tunnel-structured IrOx unlocks catalytic efficiency in proton exchange membrane water electrolyzers
Abstract
Abstract Proton exchange membrane water electrolyzers face challenges due to high iridium loading and sluggish oxygen evolution reaction kinetics when using conventional rutile-structured iridium oxide nanocatalysts. Here we find that iridium oxide catalysts with a specific tunnel-type crystal structure exhibit highly localized reactivity, where regions at tunnel mouths drive oxygen evolution far more efficiently than tunnel-wall regions. The intrinsic activity of tunnel mouths is 25-fold higher than that of tunnel walls, with shorter nanorods achieving a better balance between active site exposure and electron/mass transport efficiency. When implemented in proton exchange membrane water electrolyzers, this engineered catalyst achieves notable performance at low iridium loading (0.28 mgIr cm−2), delivering over 2.0 A cm−2 at 1.8 V (80 °C) and operating stably for 1800 h—notably outperforming conventional catalysts. Our work identifies catalytic hotspots in tunnel-structured oxides and demonstrates their rational integration into high-performance, durable electrolyzer systems.