Journal of Nanobiotechnology (Jul 2023)
Carbon nanodots constructed by ginsenosides and their high inhibitory effect on neuroblastoma
Abstract
Abstract Background Neuroblastoma is one of the common extracranial tumors in children (infants to 2 years), accounting for 8 ~ 10% of all malignant tumors. Few special drugs have been used for clinical treatment currently. Results In this work, herbal extract ginsenosides were used to synthesize fluorescent ginsenosides carbon nanodots via a one-step hydrothermal method. At a low cocultured concentration (50 µg·mL− 1) of ginsenosides carbon nanodots, the inhibition rate and apoptosis rate of SH-SY5Y cells reached ~ 45.00% and ~ 59.66%. The in vivo experiments showed tumor volume and weight of mice in ginsenosides carbon nanodots group were ~ 49.81% and ~ 34.14% to mice in model group. Since ginsenosides were used as sole reactant, ginsenosides carbon nanodots showed low toxicity and good animal response. Conclusion Low-cost ginsenosides carbon nanodots as a new type of nanomedicine with good curative effect and little toxicity show application prospects for clinical treatment of neuroblastoma. It is proposed a new design for nanomedicine based on bioactive carbon nanodots, which used natural bioactive molecules as sole source.
Keywords