Redox Biology (Sep 2019)

Carbonic anhydrase 9 confers resistance to ferroptosis/apoptosis in malignant mesothelioma under hypoxia

  • Zan Li,
  • Li Jiang,
  • Shan Hwu Chew,
  • Tasuku Hirayama,
  • Yoshitaka Sekido,
  • Shinya Toyokuni

Journal volume & issue
Vol. 26


Read online

Hypoxia and acidity provide microenvironment for selection under evolutionary pressure and proliferation in cancer cells. Carbonic anhydrases (CAs) are a superfamily of metalloenzymes present in all life kingdoms, equilibrating the reactions among CO2, bicarbonate and H+. CA9, a membrane-associated α-CA, has been a drug target for various cancers. Whereas iron is essential not only for cancer cells but also for all the lives on earth, little is known on the association among hypoxia, iron metabolism, extracellular acidity and redox regulation. Malignant mesothelioma (MM), an aggressive tumor with poor prognosis, is an intriguing model in that asbestos-associated pathogenesis includes excess iron environment during carcinogenesis. Re-analysis of rat asbestos-induced MM model revealed an inverse association between high CA9 expression and survival. Here we used human MMs to identify the molecular events surrounding CA9 from the viewpoint of iron metabolism. CA9 expression was significantly higher in MM cells than in MeT-5A mesothelial cells, which was further amplified under hypoxia (1%O2) with increased catalytic Fe(II). CA9 suppression by inhibitors (S4 and U104) decreased viability and migration of MM cells, accompanied by overexpression of TFRC, IREB1/2 and FPN1(SLC40A1) and by downregulation of FTH/FTL. This expressional pattern was similar to that of erastin-induced ferroptosis in the same cells. Furthermore, we observed mitochondrial fission and enhanced autophagy with increased catalytic Fe(II) in both mitochondria and lysosomes after CA9 inhibition, accompanied by increased peroxides, mitochondrial O2− and lipid peroxidation. The eventual cell death was significantly inhibited by deferoxamine, ferrostatin-1 and Z-VAD-FMK, suggesting a mixed cell death of ferroptosis and apoptosis. Therefore, CA9 plays a role in equilibrating among hypoxia, iron metabolism and redox regulation in MM cells. Keywords: Carbonic anhydrase, Malignant mesothelioma, Iron metabolism, Tumor biology, Apoptosis, Ferroptosis, Catalytic Fe(II)