Ecological Processes (Oct 2024)

Contrasting responses of an invasive plant to herbivory of native and introduced insects

  • Qiu-Yue Fu,
  • Guan-Wen Wei,
  • Mo-Zhu Wang,
  • Yuan Cui,
  • Bi-Cheng Dong,
  • Fei-Hai Yu

DOI
https://doi.org/10.1186/s13717-024-00560-2
Journal volume & issue
Vol. 13, no. 1
pp. 1 – 12

Abstract

Read online

Abstract Background Interactions between alien plants and insect herbivores in introduced ranges may determine their invasion success. However, few studies have investigated whether alien plants respond differently to native and introduced herbivores in their introduced ranges and whether genotypes of alien plants matter. We conducted a greenhouse experiment to examine the effects of herbivory by a native insect (Spodoptera litura), by an introduced insect (S. frugiperda), and simultaneously by both insect species on growth, morphology, and biomass allocation of 17 genotypes of an invasive alien clonal plant Hydrocotyle verticillata, and used selection gradient analysis to test which herbivory conditions favor selection of a specific leaf or root trait value. Results Different genotypes of H. verticillata showed significant variation in growth, morphology, and biomass allocation, but their responses to herbivory were relatively consistent. All three herbivory treatments significantly decreased total mass and stolon mass, but herbivory of S. frugiperda increased specific leaf area. Herbivory of S. litura and simultaneous herbivory of both insect species also decreased leaf mass, petiole mass, root mass, and ramet mass. Selection gradient analysis showed that leaf and root traits varied under different herbivory treatments. To achieve greater fitness, as measured by total mass and/or number of ramets, H. verticillata favored larger leaf area under herbivory by S. frugiperda, larger leaf area and lower specific leaf area under herbivory by S. litura, and larger leaf area, lower specific leaf area, and lower root-to-shoot ratio under simultaneous herbivory. Conclusions H. verticillata demonstrated contrasting responses to herbivory by native and introduced insects, showing a remarkable ability to coordinate leaf trait plasticity and optimize biomass allocation. This strategy allows H. verticillata to achieve greater fitness under various herbivory conditions, potentially contributing to its invasion success. These findings highlight the importance of plant–herbivore interactions in shaping invasion dynamics and underscore the complex adaptive mechanism that enables invasive plants to establish and spread in introduced ranges.

Keywords