PLoS ONE (Jan 2020)

Behavioural and cognitive changes in aged pet dogs: No effects of an enriched diet and lifelong training.

  • Durga Chapagain,
  • Lisa J Wallis,
  • Friederike Range,
  • Nadja Affenzeller,
  • Jessica Serra,
  • Zsófia Virányi

DOI
https://doi.org/10.1371/journal.pone.0238517
Journal volume & issue
Vol. 15, no. 9
p. e0238517

Abstract

Read online

Dogs demonstrate behavioural changes and cognitive decline during aging. Compared to laboratory dogs, little is known about aging in pet dogs exposed to different environments and nutrition. In this study, we examined the effects of age, an enriched diet and lifelong training on different behavioural and cognitive measures in 119 pet dogs (>6yrs). Dogs were maintained on either an enriched diet or a control diet for one year. Lifelong training was calculated using a questionnaire where owners filled in their dog's training experiences to date. Before commencing the diet and after one year of dietary treatment, they were tested in the Modified Vienna Canine Cognitive Battery (MVCCB) consisting of 11 subtests to examine correlated individual differences in a set of tasks measuring general, social and physical cognition and related behaviours. Fourty two behavioural variables were coded and were subjected to principle component analyses for variable reduction. Twelve subtest level components and two Z-transformed variables were subjected to exploratory factor analysis which resulted in six final factors: Problem solving, Trainability, Sociability, Boldness, Activity-independence and Dependency. Problem solving, Sociability, Boldness, and Dependency showed a linear decline with age, suggesting that the MVCCB can be used as a tool to measure behavioural and cognitive decline in aged pet dogs. An enriched diet and lifelong training had no effect on these factors, calling attention to the fact that the real world impact of nutritional and other interventions in possibly counteracting the effects of aging, should be further investigated in pet dogs living under diverse conditions, in order to understand their ultimate effects.