Agriculture (Sep 2024)
A Geographically Weighted Regression–Compute Unified Device Architecture Approach to Explore the Spatial Agglomeration and Heterogeneity in Arable Land Consumption in Southwest China
Abstract
Arable land loss has become a critical issue in China because of rapid urbanization, industrial expansion, and unsustainable agricultural practices. While previous studies have explored the factors contributing to this loss, they often fall short in addressing the challenges of spatial heterogeneity and large-scale dataset analysis. This research introduces an innovative approach to geographically weighted regression (GWR) for assessing arable land loss in China, effectively addressing these challenges. Focusing on Chongqing, Guizhou, and Yunnan Provinces over the past two decades, it examines spatial autocorrelation with R-squared values exceeding 0.6 and residuals. Eight factors, including environmental elements (rain, evaporation, slope, digital elevation model) and human activities (distance to city, distance to roads, population, GDP), were analyzed. By visualizing and analyzing R² spatial patterns, the results reveal a clear spatial agglomeration distribution, primarily in urban areas with industries, highly urbanized cities, and flat terrains near rivers, influenced by GDP, population, rain, and slope. The novelty of this study is that it significantly enhances GWR computational capabilities for handling extensive datasets by utilizing Compute Unified Device Architecture (CUDA) on a high-performance GPU cloud server. Simultaneously, it conducts comprehensive analyses of the GWR model’s local results through visualization and spatial autocorrelation tools, enhancing the interpretability of the GWR model. Through spatial clustering analysis of local results, this study enables targeted exploration of factors influencing arable land changes in various temporal and spatial dimensions while also evaluating the reliability of the model results.
Keywords