Cleaner Materials (Dec 2024)

Development of biopolymer composites using lignin: A sustainable technology for fostering a green transition in the construction sector

  • Barney H. Miao,
  • Robert J. Headrick,
  • Zhiye Li,
  • Leonardo Spanu,
  • David J. Loftus,
  • Michael D. Lepech

Journal volume & issue
Vol. 14
p. 100279

Abstract

Read online

Developing sustainable construction materials is important to help reduce the anthropogenic impacts of the construction industry. Currently, the production of concrete accounts for 8 % of global carbon emissions. Therefore, alternatives to concrete must be developed, to reduce its use in the future. New construction materials will help to facilitate a green transition as envisioned in global climate initiatives. Materials such as lignin are ideal, as they can be implemented with little additional cost to manufacture construction materials. We introduce a novel material, lignin-based biopolymer-bound soil composite (BSC), which is similar to other BSCs using other types of biopolymers. In addition, a design methodology is presented, which allows the manufacture of lignin-based BSCs with tailored characteristics. Two kinds of lignin — hydrolysis lignin and alkali lignin — were investigated, with five mix designs developed for each type of lignin. The lignin-based BSCs were found to have compressive strength ranging from 1.6–8.1 MPa, which allows them to be implemented in non-structural construction applications. Ultimate compressive strength, density, and other parameters were measured, leading to the development of design relationships for lignin-based BSC. The design relationships presented in this study will help introduce lignin-based BSC as a sustainable form of construction.

Keywords