IEEE Journal of Translational Engineering in Health and Medicine (Jan 2020)

Development of Low-Cost Point-of-Care Technologies for Cervical Cancer Prevention Based on a Single-Board Computer

  • Sonia Parra,
  • Eduardo Carranza,
  • Jackson Coole,
  • Brady Hunt,
  • Chelsey Smith,
  • Pelham Keahey,
  • Mauricio Maza,
  • Kathleen Schmeler,
  • Rebecca Richards-Kortum

DOI
https://doi.org/10.1109/JTEHM.2020.2970694
Journal volume & issue
Vol. 8
pp. 1 – 10

Abstract

Read online

Cervical cancer disproportionally affects women in low- and middle-income countries, in part due to the difficulty of implementing existing cervical cancer screening and diagnostic technologies in low-resource settings. Single-board computers offer a low-cost alternative to provide computational support for automated point-of-care technologies. Here we demonstrate two new devices for cervical cancer prevention that use a single-board computer: 1) a low-cost imaging system for real-time detection of cervical precancer and 2) a low-cost reader for real-time interpretation of lateral flow-based molecular tests to detect cervical cancer biomarkers. Using a Raspberry Pi computer to provide real-time image collection and processing, we developed: 1) a low-cost, portable high-resolution microendoscope system (PiHRME); and 2) a low-cost automatic lateral flow test reader (PiReader). The PiHRME acquired high-resolution ($4.4~\mu \text{m}$ ) images of the cervix at half the cost of existing high-resolution microendoscope systems; image analysis algorithms based on convolutional neural networks were implemented to provide real-time image interpretation. The PiReader acquired and analyzed images of a point-of-care human papillomavirus (HPV) serology test with the same contrast and accuracy as a standard flatbed high-resolution scanner coupled to a laptop computer, for less than one-fifth of the cost. Raspberry Pi single-board computers provide a low-cost means to implement point-of-care tools with automatic image analysis. This work demonstrates the promise of single-board computers to develop and translate low-cost, point-of-care technologies for use in low-resource settings.

Keywords