Nanomaterials (Dec 2024)

Carbon-Nanotube-Based Superhydrophobic Magnetic Nanomaterial as Absorbent for Rapid and Efficient Oil/Water Separation

  • Rabiga M. Kudaibergenova,
  • Fernanda F. Roman,
  • Adriano S. Silva,
  • Gulnar K. Sugurbekova

DOI
https://doi.org/10.3390/nano14231942
Journal volume & issue
Vol. 14, no. 23
p. 1942

Abstract

Read online

In this work, the simple fabrication of a new superhydrophobic magnetic sponge based on CNTs, NiFe2O4 nanoparticles, and PDMS was investigated. CNTs were synthesized by chemical vapor deposition (CVD) on a nickel ferrite catalyst supported on aluminum oxide (NiFe2O4/Al2O3). The synthesis of nickel ferrite (NiFe) was accomplished using the sol–gel method, yielding magnetic nanoparticles (43 Am2kg−1, coercivity of 93 Oe, 21–29 nm). A new superhydrophobic magnetic PU/CNT/NiFe2O4/PDMS sponge was fabricated using a polyurethane (PU) sponge, CNTs, NiFe2O4 nanoparticles, and polydimethylsiloxane (PDMS) through the immersion coating method. The new PU/CNT/NiFe2O4/PDMS sponge exhibits excellent superhydrophobic/oleophilic/mechanical properties and water repellency (water absorption rate of 0.4%) while having good absorption of oil, olive oil, and organic liquids of different densities (absorption capacity of 21.38 to 44.83 g/g), excellent separation efficiency (up to 99.81%), the ability to be reused for removing oil and organic solvents for more than 10 cycles, and easy control and separation from water using a magnet. The new PU/CNT/NiFe2O4/PDMS sponge is a promising candidate as a reusable sorbent for collecting oil and organic pollutants and can also be used as a hydrophobic filter due to its excellent mechanical properties.

Keywords