Vadose Zone Journal (Mar 2024)
Interpretation of large‐scale, long‐term electrical geophysical monitoring guided by a process simulation
Abstract
Abstract Surface electrical resistivity tomography (ERT) was used at a waste site to monitor vadose zone changes in electrical properties as a proxy for contaminant flux over a span of 17 years. The BC Cribs and Trenches (BCCT) site at the Hanford site contains 20 disposal trenches and six disposal cribs. Wastes include a large inventory of technetium‐99 and large masses of nitrate and uranium‐238. ERT data were collected along 41 profiles in 2005 to characterize regions of elevated bulk electrical conductivity (BEC) associated with past liquid waste discharges. Previous analyses performed on samples from four boreholes showed a high correlation between nitrate concentration and BEC. In 2022, ERT data were re‐collected along the same profiles and six additional profiles in an area not previously surveyed. Compared to background uncontaminated areas, BEC was higher in contaminated areas at the waste sites. Given the correlation between nitrate concentration and BEC previously found at this site, ERT images show the spatial distribution and relative ionic concentration of vadose zone contaminants at BCCT. Between 2005 and 2022, ERT difference images showed a decrease in BEC surrounding most waste sites, with exceptions where there were known anthropogenic surface changes. An evaluation of recharge‐driven nitrate migration using synthetic flow and transport simulations showed that downward migration causes a decrease in BEC from the decrease in ionic strength at the trailing end of the plume where contaminants migrated downward. From this, we interpret ERT difference images as showing the predominant regions of downward ion flux.