The Astrophysical Journal Letters (Jan 2024)

Sudden Polarization Angle Jumps of the Repeating Fast Radio Burst FRB 20201124A

  • J. R. Niu,
  • W. Y. Wang,
  • J. C. Jiang,
  • Y. Qu,
  • D. J. Zhou,
  • W. W. Zhu,
  • K. J. Lee,
  • J. L. Han,
  • B. Zhang,
  • D. Li,
  • S. Cao,
  • Z. Y. Fang,
  • Y. Feng,
  • Q. Y. Fu,
  • P. Jiang,
  • W. C. Jing,
  • J. Li,
  • Y. Li,
  • R. Luo,
  • L. Q. Meng,
  • C. C. Miao,
  • X. L. Miao,
  • C. H. Niu,
  • Y. C. Pan,
  • B. J. Wang,
  • F. Y. Wang,
  • H. Z. Wang,
  • P. Wang,
  • Q. Wu,
  • Z. W. Wu,
  • H. Xu,
  • J. W. Xu,
  • L. Xu,
  • M. Y. Xue,
  • Y. P. Yang,
  • M. Yuan,
  • Y. L. Yue,
  • D. Zhao,
  • C. F. Zhang,
  • D. D. Zhang,
  • J. S. Zhang,
  • S. B. Zhang,
  • Y. K. Zhang,
  • Y. H. Zhu

DOI
https://doi.org/10.3847/2041-8213/ad7023
Journal volume & issue
Vol. 972, no. 2
p. L20

Abstract

Read online

We report the first detection of polarization angle orthogonal jumps, a phenomenon previously only observed from radio pulsars, from a fast radio burst (FRB) source FRB 20201124A. We find three cases of orthogonal jumps in over 2000 bursts, all resembling those observed in pulsar single pulses. We propose that the jumps are due to the superposition of two orthogonal emission modes that could only be produced in a highly magnetized plasma, and they are caused by the line of sight sweeping across a rotating magnetosphere. The shortest jump timescale is of the order of 1 millisecond, which hints that the emission modes come from regions smaller than the light cylinder of most pulsars or magnetars. This discovery provides convincing evidence that FRB emission originates from the complex magnetosphere of a magnetar, suggesting an FRB emission mechanism that is analogous to radio pulsars despite a huge luminosity difference between two types of objects.

Keywords